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Improve disease prevention, diagnosis, prognosis, and treatment efficacy

Stephens, et al. PLOS Biology, 2015. Images from encodeproject.org and nanalyze.com.
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1 Petabyte of Data =
20M four-drawer filing cabinets filled
with text

or

13.3 years of HD-TV video
or

~7 billion Facebook photos
or

1 PB of MP3 songs requires ~2,000
years to play
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e We have lots of data and complex problems
e \We want to manage lots of data and make
data-driven predictions
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e Computational biology is the application of computer science and mathematics to
problems in biology

e Not just genomics! e.g., biophysics, biochemistry, etc.

¢ The terms ‘bioinformatics’ and ‘computational biology’ are often used interchangeably:
e Bioinformatics is often associated with the development of software tools, databases, and
visualization methods

e Computational biology is often used to describe data analysis, algorithm development,
and mathematical modeling

Other terms you might hear to describe the interdiscipinary field of
biology/math/computer science:
Data Science, Systems Biology, Statistical Biology, Biostatistics, and Genomics (implicit)
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Bioinformat,icians: Thpt, can work: from gnawhprp

www.biocomicals.com

17



Computational people can work from anywhere...
but that also means they can work from anywhere

Generally computational
skills are:

e In demand

e Flexible

e Highly transferable

Bioinformat.icians: Thpt, can work: from gnawhprp

www.biocomicals.com
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Computational Biology IS Biology!
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Complex problems + Big Data —>
Machine Learning!
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Machine Learning

¢ data analysis method that automates analytical model building
e make data driven predictions or discover patterns without explicit human intervention
e Useful when have complex problems and lots of data (‘big data’)

Traditional Programming
Data [2,3]
Computer Output Computer 5
Program +

Machine Learning

Data [2,3]
Computer Program Computer +
Output 5

e Our goal isn’t to make perfect guesses, but to make useful guesses—we want to
build a model that is useful for the future 20




Supervised Learning:
-Prediction

Ex. linear & logistic regression

Unsupervised Learning:
-Find patterns

Ex. Clustering, Principle Component Analysis
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Real-World Machine Learning Applications

22



Real-World Machine Learning Applications

L
Self-Driving Car

22



Real-World Machine Learning Applications

Self-Driving Car

22



Real-World Machine Learning Applications

Self-Driving Car

Mail Sorting

22



Real-World Machine Learning Applications

Self-Driving Car

NETRELA N

Mail Sorting

Recommendation Engine
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Example Computational Biology Experiments and Tasks:
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Example Computational Biology Experiments and Tasks:

e Example 1: Identify Variants Associated with a Predisposition to ALS

24



Amyotrophic Lateral Sclerosis (ALS)

* Also known as Lou Gehrig’s
disease

* Progressive
neurodegenerative disease
causing muscle weakness and
atrophy due to degeneration
of motor neurons

e ~5,600 new cases in the US
annually

e Median survival time from
onset to death is 39 months

Photo: phillysportshistory.com



89% of sporadic ALS cases are not explained
by known genetic alterations

Heterogeneous
symptoms,
progression, and
genetic
mutations

20+
Distinct
ALS
Subtypes

Figure: Chen, et al. 2013.

Genetic  Chromosomal Gene Protein Onset Inheritance Clinical feature Other diseases
subtype locus caused by the gene
ALST 21922.1 SOD1 Cu/Zn SOD-1 Adult AD/AR Typical ALS NA
ALS2 2933-2935 Alsin Alsin Juv AR Slowly progressive, predominantly UMN PLS IAHSP
signs like limb, & facial spasticity
ALS3 18921 Unknown  Unknown Adu AD Typical ALS with limb onset NA
especially lower limb
ALS4 9934 SETX Senataxin Juv AD slowly progressive, distal hereditary — gap 1 a0 A0A2
motor neuropathy with pyramidal signs
ALS5 15015-21 SPG 11 Spatacsin Juv AR Slowly progressive HSP
ALS6 16p11.2 FUS Fused in Sarcoma Juv/Adu  AD/AR Typical ALS NA
ALS8 20q13.3 VAPB VAPB Adu AD Typical and atypical ALS SMA
ALS9 14911.2 ANG Angiogenin Adu AD Typical ALS, FTD and Parkinsonism NA
ALS10 103622 TARDgp  PNA-binding Adu AD Typical ALS NA
protein
ALSTT 6021 FIG 4 Phosphoinositide- Adu AD Rapid progressive with prominent CMT 4 J
S5phosphatease corticospinal tract signs
ALST2 10p13 OPTN Optineurin Adu AD/AR Slowly progressive with I|mb onset Primary Open Angle
and predominant UMN signs Glaucoma
ALS14 9p133 VCP VCP Adu AD Adult onset, with or without FTD IBMPFD
A/lf;;/ Xp11 UBQLN2 Ubiquilin 2 Aduw/luv XD UMN signs proceeding LMN signs NA
ALS16 9p13.2-21.3 SIGMAR1 SIGMAR1 Juv AR Juvenile onset typical ALS FTD
ALS-FTD1 9g21-22 unknown unknown Adu AD ALS with FTD FTD
ALS-FTD2 9p21 C90RF72 C90RF72 Adu AD ALS with FTD FTD
NA 2p13 DCTNT Dynactin Adu AD Distal hereditary motor NA
neuropathy with vocal paresis
Other rare-occurring ALS genes
ALS3 18q21 Unknown Unknown Adu AD Typical ALS with Iimb onset especially NA
lower limb
ALS7 20ptel-p13 Unknown Unknown Adu AD/AR Typical ALS NA
NA 12922-23 DAO DAO Adu AD Typical ALS NA




Image: QR Pharma.

Neurotoxic Protein Aggregates
in >95% of ALS Patients
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Amyotrophic lateral
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ALS Genome Sequencing Consortium

Project Goals

Identify rare coding variants and new
genes/pathways associated with

sporadic ALS
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Identifying Variants with
Exome Sequencing

 Exome Sequencing: Identify variation in coding regions (genes)
* Advantage: Interpretability and lower cost compared to whole genome
sequencing

Gene
A

[ Exon

- I- -Hh

Compare Variants
CTACGATCGA Control Group (n="6500)
CTAGGATCGA Affected Patient Group (n="~3000)




Gene Burden Testing of Rare Variants

Count Qualifying Variants:

* Count qualifying variants in a gene-based collapsing analysis including
exons meeting coverage benchmarks
Example: Loss of Function (splice, nonsense, or frameshift)

Gene X: Variant Enrichment

Ll ||

Controls Cases

Compare Frequency Distributions

* Significant enrichment of qualifying variants between groups
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Gene Burden Testing of Rare Variants

Count Qualifying Variants:

* Count qualifying variants in a gene-based collapsing analysis including
exons meeting coverage benchmarks
Example: Loss of Function (splice, nonsense, or frameshift)

Gene X: Variant Enrichment

| ‘ H v SOD1: First gene
associated with
familial ALS

(enzyme that
Controls Cases destroys free
superoxide radicals)

Compare Frequency Distributions

* Significant enrichment of qualifying variants between groups
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Identifying Novel ALS Genes: TBK1

eL)PinZ
RVIS iﬁl)k
e TBK1 interacts with other 3
ALS-associated genes that L
play important roles in |
cos 1
autophagy and
inﬂa m mation - ! ! 3 4 5 6 7 8 9 10 1 12 13 1516 18 7777710
‘ LOF variant
& s ¢ O Missense variant * Non-benign variants:
’.\" - @ splice variant 1.097% of cases
~1 J\ . | case variant e LoF variants:
. | control variant 0.382% of cases
Amyotrophic lateral F e  vari
sclerosis aggregates : Case/control variant

Cirulli & Lasseigne, et al. 2016. Wild, et al. 2011. Gleason, et al. 2011. Pilli, et al. 2012. Kachaner, et al. 2012. Komatsu, et al. 2012. 31



Identifying Novel ALS Genes: NEK1

Cirulli & Lasseigne, et al. 2015.

Observed —log,,(p)

NEK1—e
p=2.6x10*

EP400
p=1.0x105
TP53
p=1.7x10°
TBK1 N

p=3.8x1({
e

TMEM161B

L]

OR (7.4) 30/2874 (1.04%) vs 12/8475 (0.14%)

27 EP400:  OR (13.3) 9/2874 (00.31%) vs 2/8475 (0.02%)
3% TP53: OR (0.1) 1/2874 (0.04%) vs 22/8475 (0.26%)
4" TBK1: OR (11.8) 8/2874 (0.28%) vs 2/8475 (0.02%)

5% TMEM161B:OR (17.7) 6/2874 (0.21%) vs 1/8475 (0.01%)
6" TSC2: OR (N/A)  0/2874 (0.00%) vs 17/8475 (0.20%)
7" NF2: OR (W/A)  0/2874 (0.00%) vs 13/8475 (0.15%)
8" FER1L6:  OR (0.1) 1/2874 (0.04%) vs 38/8475 (0.45%)
9% OPTN: OR (5.9) 12/2874 (0.42%) vs 6/8475 (0.07%)
10"CRIPAK: _OR (2.4) 32/2874 (1.22%) vs 40/8475 (0.52%)

Expected —log,,(p)

3 4

QQ plot: Dominant LoF model
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Identifying Novel ALS Genes: NEK1

* NEKI: multi-functional ptanior
kinase, role in cilia
formation and
centrosome function, Epaon,

. . TP53 N
never previously linked to
ALS

p=1.7x10°
TBK1 ~e
p=3.8x105
TMEM161B e
p=1.1x10*
TSC2 ™

Observed —log,,(p)
4

* Follow-up cohort (1,318
additional cases and N -

1 NEK1: OR (7.4) 30/2874 (1.04%) vs 12/8475 (0.14%)

2" EP400: OR (13.3) 9/2874 (00.31%) vs 2/8475 (0.02%)

2 371 additional co ntrols) 39 TP53:  OR(0.1) 1/2874(0.04%)vs 22/8475 (0.26%)
’ 4% TBK1:  OR(11.8) 8/2874(0.28%) vs 2/8475 (0.02%)
’ 5% TMEM161B:OR (17.7) 6/2874 (0.21%) vs 1/8475 (0.01%)
fu rther Supports N E K 1 S 6" TSC2: OR (N/A)  0/2874 (0.00%) vs 17/8475 (0.20%)
7" NF2: OR (N/A)  0/2874 (0.00%) vs 13/8475 (0.15%)
: : ys 8" FER1L6:  OR(0.1) 1/2874 (0.04%) vs 38/8475 (0.45%)
role in ALS predisposition 1 9 OPTN.  OR(59) 122674 (0.42%) Vs /8475 (0.07%)
A s | . | 10"CRIPAK: _OR (2.4) 322674 (1.22%) vs 40/8475 (0.52%)
0 1 2 3 4

Expected —log,,(p)

QQ plot: Dominant LoF model
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NEK1 associates with ALS2 and VAPB

To investigate binding partners, we performed
an unbiased screen of NEK1-interacting

proteins in human kidney epithelial cells via
AP-MS

Cirulli & Lasseigne, et al. 2015.
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NEK1 associates with ALS2 and VAPB

To investigate binding partners, we performed MOTORS/
an unbiased screen of NEK1-interacting

MICROTUBULES
proteins in human kidney epithelial cells via

KIF2A
AP-MS KIF2C

KATNB1

CEP97
CEP290

Centrosome

VPS26B
VPS29*

Retromer

Other

ALS-related

AMK2B
CAMK2D
CAMK2G

CAM Kinase

Transcription
Network

33
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NEK1 associates with ALS2 and VAPB

e To investigate binding partners, we performed
an unbiased screen of NEK1-interacting

proteins in human kidney epithelial cells via
AP-MS

* Interactions validated by immunoprecipitation
followed by western blotting of co-expressed
proteins in neuronal NSC-34 cells

Cirulli & Lasseigne, et al. 2015.

MOTORS/
MICROTUBULES

KIF2A
CEP97
CEP290

KIF2C
Centrosome

KATNB1

C21orf2
KIAAD562
/XDC

Other

VPS26B O/l-_\FSDZB
VPS29 VAPA
Retromer ALS-related

AMK2B
CAMK2D
CAMK2G

CAM Kinase

Transcription
Network

Recessive causes of ALS when mutated:

ALS2: RAB guanine nucleotide exchange factor

VAPB/VAPA: transmembrane proteins that transfer
lipids from the ER to the plasma membrane
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NEK1 associates with ALS2 and VAPB

To investigate binding partners, we performed
an unbiased screen of NEK1-interacting
proteins in human kidney epithelial cells via
AP-MS

Interactions validated by immunoprecipitation
followed by western blotting of co-expressed
proteins in neuronal NSC-34 cells

Suggests NEK1 may contribute to ALS through
multiple mechanisms:

— ALS2 and VAPB control cytoplasmic
trafficking of endosomes and lipids in
diverse cell lineages, respectively, both
biological functions that are now
appreciated as important in other
neurodegenerative diseases

Cirulli & Lasseigne, et al. 2015.

MOTORS/
MICROTUBULES

KIF2A
CEP97
CEP290

KIF2C
Centrosome

KATNB1
VPS268
VPS29*

Retromer

CAMK2B
CAMK2D
CAMK2G

CAM Kinase

Transcription
Network

Recessive causes of ALS when mutated:

ALS2: RAB guanine nucleotide exchange factor

VAPB/VAPA: transmembrane proteins that transfer
lipids from the ER to the plasma membrane
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Example Computational Biology Experiments and Tasks:

e Example 1: Identify Variants Associated with a Predisposition to ALS
e Annotation

e Databasing

e Statistical Programming (analysis + visualization)
e Hypothesis-Generating Research

34



Example Computational Biology Experiments and Tasks:

e Example 1: Identify Variants Associated with a Predisposition to ALS
e Annotation
e Databasing
e Statistical Programming (analysis + visualization)
e Hypothesis-Generating Research

e Example 2: Develop Biomarkers for Kidney Cancer Diagnosis
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Kidney Cancer Diagnosis and Treatment

*  ~65,000 new cases in the United States
each year (10th most common cancer)

If caught early, patients typically do well

Treatment for advanced cases has
improved in recent years, but the best
drugs only increase disease free
progression after resection by months
and have harsh side effects

Considered non-responsive to
traditional radiation and
chemotherapies



Kidney Cancer Diagnosis and Treatment

~65,000 new cases in the United States
each year (10th most common cancer)

If caught early, patients typically do well

Treatment for advanced cases has
improved in recent years, but the best
drugs only increase disease free
progression after resection by months
and have harsh side effects

Considered non-responsive to
traditional radiation and
chemotherapies

Stage | Cancer

Adrenal
gland

Kidney

Renal
artery

Tumoris 7 cm
or smaller

Cortex

Ureter

81% Survival at 5 years
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Kidney Cancer Diagnosis and Treatment

~65,000 new cases in the United States
each year (10th most common cancer)

If caught early, patients typically do well

Treatment for advanced cases has
improved in recent years, but the best
drugs only increase disease free
progression after resection by months
and have harsh side effects

Considered non-responsive to
traditional radiation and
chemotherapies

Stage Il Cancer

Adrenal

gland 7[

Kidney
Renal
artery
Tumor is
larger than
7cm
Cortex

Ureter

74% Survival at 5 years
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Kidney Cancer Diagnosis and Treatment

~65,000 new cases in the United States
each year (10th most common cancer)

If caught early, patients typically do well

Treatment for advanced cases has
improved in recent years, but the best
drugs only increase disease free
progression after resection by months
and have harsh side effects

Considered non-responsive to
traditional radiation and
chemotherapies

Adrenal

Kidney

Ureter

Stage lll Cancer

Tumor

53% Survival at 5 years

Multiple
lymph node
metastasis
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Kidney Cancer Diagnosis and Treatment

~65,000 new cases in the United States
each year (10th most common cancer)

If caught early, patients typically do well

Treatment for advanced cases has
improved in recent years, but the best
drugs only increase disease free
progression after resection by months
and have harsh side effects

Considered non-responsive to
traditional radiation and
chemotherapies

Stage IV Cancer

Metastases

Brain

Tumor

© 2005 American Sockety of Climical Oncology

8% Survival at 5 years

Lung

Liver

Kidney

Bone

36



Cancer Genomics Research:
ldentifying Genomic Changes Relevant to Patient Care

101 Tumor and Normal Kidney Samples

Healthy Cancer Treatment Remission
Early Diagnosis Prognosis & Treatment Efficacy
cancer-specific Treatment monitor molecular

molecular defects molecular  signatures of response or
defects resistance to treatment

predicting survival
or personalized
treatment



Cancer Genomics Research:
ldentifying Genomic Changes Relevant to Patient Care

101 Tumor and Normal Kidney Samples
Healthy Cancer Treatment Remission

wéw N

Early Diagnosis Prognosis & Treatment Efficacy
cancer-specific Treatment monitor molecular
molecular defects molecular signatures of response or
defects resistance to treatment
predicting survival
or personalized
treatment




DNA Methylation at CpGs: The “Fifth” Base

Regulates biological processes without altering genetic
blueprint (DNA sequence)

Cytosine 5-Methyl Cytosine DNA Methylation Functions:
*  DNA-protein interactions
N NH; «  Cellular differentiation
SN DY * Transposable element suppression
| /g | /]\ X-inactivation
” ) N 0 *  Genomic imprinting
* Gene regulation

*  DNA methylation as early diagnostic biomarkers:
* Early events in carcinogenesis

* Stable DNA mark and can be quantitatively
measured



Diagnostic DNA Methylation Biomarkers: Kidney Cancer

All Subtypes

1: IJI il ey umor

.Normal Tissue

.Clear Cell

Il ’I"l”! V' I | | .Other Subtypes

i .Normal Tissue

20 CpGs || ||

100%

NH,

)
e
H

39

v
Lasseigne, et al. BMC Cancer, 2014.



Diagnostic DNA Methylation Biomarkers: Kidney Cancer

All Subtypes

l’ H . Kidney Tumor
[l Normal Tissue

.Clear Cell

|||1|[|| ” || [H | | .Other Subtypes

|| || .Normal Tissue

20 CpGs

100%

NH,

)
e
N

39

v
Lasseigne, et al. BMC Cancer, 2014.



Kidney Cancer Diagnostic Model

TCGA data as a validation test set:
-732 kidney cancer tissues
(3 subtypes!)
-410 normal kidney tissues

Lasseigne, et al. BMC Cancer, 2014.



Kidney Cancer Diagnostic Model

Q
-
(==} . .
=N TCGA data as a validation test set:
-732 kidney cancer tissues
22 (3 subtypes!)
£ . .
e -410 normal kidney tissues
@
s
- o
2 ' — HAIB/Stanford Training Data
=== TCGA Test Data
— Random Model, 50 Random Draws of
g - 4 Non-Significant Training Set CpGs

| | | | |

0.0 0.2 0.4 0.6 0.8 1.0
False Positive

40
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Kidney Cancer Diagnostic Model

S
!-‘ —q
o TCGA data as a validation test set:
-732 kidney cancer tissues
2 = (3 subtypes!)
= . .
[ -410 normal kidney tissues
@
s
- o
Correctly predict 87.8% of the
o — HAIB/Stanford Training Data normal tissues and 96.2% of the
==TCGATest Data tumor tissues in the TCGA data
— Random Model, 50 Random Draws of
g - 4 Non-Significant Training Set CpGs

| 1 | | | |

0.0 0.2 0.4 0.6 0.8 1.0
False Positive

40
Lasseigne, et al. BMC Cancer, 2014.



From Bench To Bedside:
'liquid biopsies’ from peripheral fluids

Blood Test

Patient with
Kidney cancer

Urine Test

Healthy

Cancer Treatment Remission

»

Cell-free DNA

*Early diagnosis for non-specific symptoms

*Clarify between small benign lesions and
malignant tumors

*Follow patients after surgery or during
treatment to watch for recurrence

*Monitor molecular changes associated
with patient outcome



Example Computational Biology Experiments and Tasks:

e Example 1: Identify Variants Associated with a Predisposition to ALS
e Annotation
e Databasing
e Statistical Programming (analysis + visualization)
e Hypothesis-Generating Research

e Example 2: Develop Biomarkers for Kidney Cancer Diagnosis
e Statistical Programming (analysis + visualization)
e Machine Learning
¢ Direct Clinical Application
¢ Interdependent and Complementary ‘Wet’/‘Dry’ Biology Research
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Example Computational Biology Experiments and Tasks:

e Example 1: Identify Variants Associated with a Predisposition to ALS
e Annotation
e Databasing
e Statistical Programming (analysis + visualization)
e Hypothesis-Generating Research

e Example 2: Develop Biomarkers for Kidney Cancer Diagnosis
e Statistical Programming (analysis + visualization)
e Machine Learning
¢ Direct Clinical Application
¢ Interdependent and Complementary ‘Wet’/‘Dry’ Biology Research

e Example 3: Generate Pan-Cancer Models of Patient Prognosis
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Cell proliferation is fundamental to cancer

Resisting
cell death

Inducing
angiogenesis

Hanahan & Weinberg, Cell, 2000.

Sustaining proliferative
signaling

Enabling replicative
immortality

Evading growth
suppressors

Activating invasion
and metastasis
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Measuring cell proliferation from RNA-seq data

e Venet, et al. cell proliferation ‘metagene’:

-Median of top 1% of genes associated
with PCNA expression (essential for
replication)

‘Proliferative Index’ (PI):

relative expression of proliferation-
associated genes

Pl/metaPCNA: Ge, et al, Genomics 2005 and Venet, et al, PLOS Computational Biology, 2011



Measuring cell proliferation from RNA-seq data

e Venet, et al. cell proliferation ‘metagene’:

-Median of top 1% of genes associated
with PCNA expression (essential for
replication)

‘Proliferative Index’ (PI):

relative expression of proliferation-
associated genes

Proliferation Index (Counts/Million)

80—

60—

40—

20+

‘Healthy’ GTEx Tissues

-----40 @O®GCDO o O 0O

R i : H
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post-mitotic tissues
ex. skeletal muscle
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Pl/metaPCNA: Ge, et al, Genomics 2005 and Venet, et al, PLOS Computational Biology, 2011



Measuring cell proliferation from RNA-seq data

‘Healthy’ GTEx Tissues

80—

T
|
'
'
'
o
60— [¢]
o
o

e Venet, et al. cell proliferation ‘metagene’:
-Median of top 1% of genes associated

Proliferation Index (Counts/Million)

with PCNA expression (essential for ;L
replication) | .
E

‘Proliferative Index’ (Pl): = B el
relative expression of proliferation- : b gé @ sO;E@SH@EH
. co0g. fo o 00 o 50 o gigiss T

associated genes gl e 5 AT

post-mitotic tissues high cell turnover

ex. skeletal muscle ex. skin
47

Pl/metaPCNA: Ge, et al, Genomics 2005 and Venet, et al, PLOS Computational Biology, 2011



Examine the role of cell proliferation in
patient outcomes across cancers
catalogued by The Cancer Genome Atlas



The TCGA Dataset
T - T

ACC Adrenocortical Carcinoma 79
BLCA Bladder Urothelial Carcinoma 385
BRCA Breast Invasive Carcinoma 1038
CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 393
ESCA Esophageal Carcinoma 163
GBM Glioblastoma Multiforme 144
HNSC Head and Neck Squamous Cell Carcinoma 508
KIRC Kidney Renal Clear Cell Carcinoma 525
KIRP Kidney Renal Papillary Cell Carcinoma 266
LAML Acute Myeloid Leukemia 148
LGG Brain Lower Grade Glioma 463
LIHC Liver Hepatocellular Carcinoma 355
LUAD Lung Adenocarcinoma 493
LUSC Lung Squamous Cell Carcinoma 479
MESO Mesothelioma 72
ov Ovarian Serous Cystadenocarcinoma 252
PAAD Pancreatic Adenocarcinoma 167
SARC Sarcoma 248
STAD Stomach Adenocarcinoma 403

Total: 19 Cancers, 6581 Patients



‘Common Survival Genes’ across 19 cancers

e ‘Common Survival Genes’
Cox regression uncorrected p-value
<0.05 for a gene in at least 9/19
cancers:

« 84 genes, enriched for
proliferation-related
processes including mitosis,
cell and nuclear division, and
spindle formation

Ramaker & Lasseigne, et al. 2017.
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‘Common Survival Genes’ across 19 cancers

* ‘Common Survival Genes’
Cox regression uncorrected p-value *
<0.05 for a gene in at least 9/19
cancers:

* 84 genes, enriched for
proliferation-related processes
including mitosis, cell and
nuclear division, and spindle
formation

Top Cross Cancer Survival Genes

* Clustering by Cox regression p-
values:

Ramaker & Lasseigne, et al. 2017. Scaled -og10 Cox p-value



‘Common Survival Genes’ across 19 cancers

* ‘Common Survival Genes’
Cox regression uncorrected p-value
<0.05 for a gene in at least 9/19
cancers:

* 84 genes, enriched for
proliferation-related processes
including mitosis, cell and
nuclear division, and spindle
formation

* Clustering by Cox regression p-
values:
7 ‘Proliferative Informative Cancers’
and

Ramaker & Lasseigne, et al. 2017.

Top Cross Cancer Survival Genes

Scaled -log10 Cox p-value
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‘Common Survival Genes’ across 19 cancers

* ‘Common Survival Genes’
Cox regression uncorrected p-value *
<0.05 for a gene in at least 9/19
cancers:

* 84 genes, enriched for
proliferation-related processes
including mitosis, cell and
nuclear division, and spindle
formation

Top Cross Cancer Survival Genes

(Non-PICs)

* Clustering by Cox regression p-
values:
7 ‘Proliferative Informative Cancers’
and 12 ‘Non-Proliferative Informative

Non-Proliferative Informative Cancers

<0 >0 J00<0O0O0O<O [ Ryala) O
Cancers’ SRCBE=2E033033c223E
ho 2039FmofFgaTexag-¥

1 0 1 2 3

—

Ramaker & Lasseigne, et al. 2017. Scaled -log0 Cox p-value
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Cross-Cancer Patient Outcome Model

= Cox
~20,000 gene . Survival®~ -0.104 + 0.086*ADAM12
values b with 0.056*DNA2 + 0.013*DONSON +
. LASSO 0.098*HJURP - 0.022*NDRG2 +
Cancer Pat'.e n: feature 0.031*RAD54B + 0.040*SHOX2 -
Survival] : 0.155*SUOX
selection

Ramaker & Lasseigne, et al. 2017.
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Cross-Cancer Patient Outcome Model

= Cox
~20,000 gene regression
expression )
P with
values ¢~ LASSO
Cancer Patient
Survival feature
- .
selection
O_ | _—
|
..G_J. (=,
©
o © |
= O
K7)
. e |
) o
2
=
—— All Cancers (AUC: 0.651)
—— PICs (AUC: 0.856)
o | Non-PICs (AUC: 0.634)
=

| | | | | |

00 02 04 06 08 1.0

False positive rate

Ramaker & Lasseigne, et al. 2017.

Survival~ -0.104 + 0.086*ADAM12
+0.037*CKS1 - 0.088*CRYL1 +
0.056*DNA2 + 0.013*DONSON +
0.098*HJURP - 0.022*NDRG2 +
0.031*RAD54B + 0.040*SHOX2 -
0.155*SUOX
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Cross-Cancer Patient Outcome Model

= Cox
~20,000 gene regression
expression ]
P with
values g~ LASSO
Cancer Patient
Survival feature
- .
selection
O_ | —
|
) (=,
©
o © |
= O
K7)
. e |
o) o
o
= &
o —— All Cancers (AUC: 0.651)
—— PICs (AUC: 0.856)
o | Non-PICs (AUC: 0.634)
o

| | | | | |

00 02 04 06 08 1.0

False positive rate

Ramaker & Lasseigne, et al. 2017.

Survival~ -0.104 + 0.086*ADAM12
+0.037*CKS1 - 0.088*CRYL1 +
0.056*DNA2 + 0.013*DONSON +
0.098*HJURP - 0.022*NDRG2 +
0.031*RAD54B + 0.040*SHOX2 -
0.155*SUOX

Utility:

e Predict patient prognosis

e Potentially inform on treatments

e Use of metagenes to infer molecular
profiles from gene expression data
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Analysis Packages: e.g. ‘Proliferativelndex’

e Analytical R package available on
CRAN and GitHub (continuous
integration with Travis Cl)

e Documented functions and a
vignette with examples

e Provides users with R functions for
calculating and analyzing the
proliferative index (Pl) from an RNA-
seq dataset

compareModeltoPI function
The function compareModeltoPI will take, as input, the user’s data and model identifiers and compare to PI:

modelComparison<-compareModeltoPI(exampleTCGAData, proliferativeIndices)

SpearmanRho SpearmanPvalue PCAPropOfVariance

PC1 -0.1706670 0.1324595 0.44799

o @83 550 PC2 0.1009250 0.3753928 0.08169

© | %%)g] 02)00 . PC3 0.0541626 0.6347829 0.04912

T 5o d @@08%0 PC4 -0.2893379 0.0099231 0.04025
® e° oooo 80? PC5 -0.1059396 0.3520354 0.03288

B B s e s PC6 -0.1822055 0.1079531 0.02686

15 -5 5 15 PC7 -0.4116115 0.0001866 0.02272

model PC1 PC8 0.1556962 0.1703124 0.02070

PC9 -0.2600779 0.0208781 0.01918

PC10  -0.0916504 0.4210060 0.01803

Ramaker & Lasseigne, et al. Oncotarget, 2017.
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Example Computational Biology Experiments and Tasks:

e Example 1: Identify Variants Associated with a Predisposition to ALS
e Annotation
e Databasing
e Statistical Programming (analysis + visualization)
e Hypothesis-Generating Research

e Example 2: Develop Biomarkers for Kidney Cancer Diagnosis
e Statistical Programming (analysis + visualization)
e Machine Learning
¢ Clinical Application
¢ Interdependent and Complementary ‘Wet’/‘Dry’ Biology Research

e Example 3: Generate Pan-Cancer Models of Patient Prognosis
Statistical Programming (analysis + visualization)
Machine Learning

Software Development

Computational Research
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Take-Home Message
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Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis,
prognosis, and treatment efficacy
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Take-Home Message

Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis,
prognosis, and treatment efficacy

Computers and math are necessary to advance biological research (may be referred to as computational biology,
bioinformatics, systems biology, data science, statistical biology, biostatistics, etc.)

Machine learning is a data analysis method (and subfield of computer science) that automate analytical model building to
make data driven predictions or discover patterns without explicit human intervention (algorithms are implemented in code)

Machine learning is useful when we have complex problems with lots of ‘big’ data

‘Wet lab’ and ‘dry lab’ biology inform one another—>both are biology!

Traditional Programming

Data [2,3]
Computer Output Computer 5
Program +

Machine Learning

Data [2,3]
Computer Program Computer +
Output 5
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Genomics Requires Team and Individual Expertise in Many Disciplines Because We Are Addressing
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Complicated Questions

Methylationanalysis = function(Data,vars,perms=3000,seed=]

# source the libraries

Tibrary(samr)

Tibrary(MASS)
BonLine=-1o0g(0.05/nrow(Dataspata),10)
# initilize the variables

pvals=NuLL # for samr

X=NULL #our retrun variable

# cut down the info file to only the data of 1Pter° t

pata$info=patasinfo[,match(vars,colnames(pata$info))

Programming

Yi=Po+BiX;+B,%; +B5X;

Mathematics
\ / «

eeeeeeeeeeeeeeeeeeee

GENOMICS -

/ ..,\ '*\\ engineering
B oY

Communication

Computational Infrastructure Molecular Biology/

(IT)
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PSA: Any Research Experience is Useful When You’re Starting Out

e Catfish virus genes increasing disease susceptibility

e Using bacteria to clean hydrocarbons from ship bilge water
e Hormone effect on kidney mitochondria and obesity

e Reverse engineering electromagnetic flow probes

e Using bacteria to produce ethanol

* Mechanisms of oxidative stress in the brain
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Thanks! Slides available at
https://www.lasseigne.org/post/2018-06-04-
biotraincompbioworkshop2018/
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“Does this count as big data?”

Brittany N. Lasseigne, PhD
@bnlasse blasseighe@hudsonalpha.org
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