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• HudsonAlpha	Institute	for	Biotechnology,	2014-present	
– Applying	machine	learning,	big	data	integraiton	and	genomics	to	complex	human	disease	to	improve	

disease	prevention,	detection,	treatment,	and	monitoring
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• Which patients are high risk for 
developing cancer?

• What are early biomarkers of 
cancer?

• Which patients are likely to be 
short/long term cancer 
survivers?

• What chemotherapeutic might a 
cancer patient benefit from?
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Case Study: The Cancer Genome Atlas
• Mulitiple data types for 11,000+ patients 
• 549,625 files with 2000+ metadata attributes
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1	Petabyte	of	Data	=	
20M	four-drawer	filing	cabinets	filled	

with	text	
or	

13.3	years	of	HD-TV	video	
or	

~7	billion	Facebook	photos	
or	

1	PB	of	MP3	songs	requires	~2,000	
years	to	play
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Improve disease prevention, diagnosis, prognosis, and treatment efficacy 

Multidimensional Data Sets

• We	have	lots	of	data	and	complex	problems	
• We	want	to	manage	lots	of	data	and	make	
data-driven	predictions

http://encodeproject.org
http://xorlogics.com
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Multidimensional Data Sets

Complex	problems	+	Big	Data	—>			
Computer	Science	+	Mathematics

http://encodeproject.org
http://xorlogics.com
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• Computational	biology	is	the	application	of	computer	science	and	mathematics	to	
problems	in	biology

• Not	just	genomics!	e.g.,	biophysics,	biochemistry,	etc.

• The	terms	‘bioinformatics’	and	‘computational	biology’	are	often	used	interchangeably:
• Bioinformatics	is	often	associated	with	the	development	of	software	tools,	databases,	and	
visualization	methods

• Computational	biology	is	often	used	to	describe	data	analysis,	algorithm	development,	
and	mathematical	modeling

Other	terms	you	might	hear	to	describe	the	interdiscipinary	field	of	
biology/math/computer	science:	

Data	Science,	Systems	Biology,	Statistical	Biology,	Biostatistics,	and	Genomics	(implicit)
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Wet	Lab
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Computational	people	can	work	from	anywhere…	
but	that	also	means	they	can	work	from	anywhere



17

Generally	computational	
skills	are:	

• In	demand	
• Flexible	
• Highly	transferable

Computational	people	can	work	from	anywhere…	
but	that	also	means	they	can	work	from	anywhere
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Computational	Biology	IS	Biology!



Cells, Tissues, & Diseases Functional Annotations

Image from encodeproject.org and xorlogics.com. 19

Multidimensional Data Sets

Complex	problems	+	Big	Data	—>			
Machine	Learning!

http://encodeproject.org
http://xorlogics.com
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Computer	
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Program
Output
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Computer	
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Computer	
Data	

Output
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Machine	Learning

Computer	
[2,3]	

5
+

• Our goal isn’t to make perfect guesses, but to make useful guesses—we want to 
build a model that is useful for the future
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Supervised	Learning:	
-Prediction	

Ex.	linear	&	logistic	regression

Unsupervised	Learning:	
-Find	patterns		

Ex.	Clustering,	Principle	Component	Analysis

Known	Data	+	Known	Response

YES	

NO

MODEL

NEW	DATA

Predict	Response

Clusters	of	Categorized	Data

Uncategorized	Data
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Recommendation	Engine

Mail	Sorting

Self-Driving	Car
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Example	Computational	Biology	Experiments	and	Tasks:

• Example	1:		Identify	Variants	Associated	with	a	Predisposition	to	ALS
• Annotation
• Databasing
• Statistical	Programming	(analysis	+	visualization)
• Hypothesis-Generating	Research

• Example	2:		Develop	Biomarkers	for	Kidney	Cancer	Diagnosis
• Statistical	Programming	(analysis	+	visualization)
• Machine	Learning
• Direct	Clinical	Application
• Interdependent	and	Complementary	‘Wet’/‘Dry’	Biology	Research

• Example	3:	Generate	Pan-Cancer	Models	of	Patient	Prognosis
• Statistical	Programming	(analysis	+	visualization)
• Machine	Learning
• Software	Development
• Computational	Research	



Amyotrophic	Lateral	Sclerosis	(ALS)

• Also	known	as	Lou	Gehrig’s	
disease	

• Progressive	
neurodegenerative	disease	
causing	muscle	weakness	and	
atrophy	due	to	degeneration	
of	motor	neurons	

• ~5,600	new	cases	in	the	US	
annually	

• Median	survival	time	from	
onset	to	death	is	39	months

Photo:		phillysportshistory.com
25
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Heterogeneous	
symptoms,	

progression,	and	
genetic	

mutations	

20+		
Distinct		
ALS		

Subtypes

Figure:		Chen,	et	al.	2013.

89%	of	sporadic	ALS	cases	are	not	explained		
by	known	gene;c	altera;ons		

	



Neurotoxic	Protein	Aggregates 
in	>95%	of	ALS	Patients
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Image:		QR	Pharma.		

Alzheimer’s	plaques Parkinson’s	Lewy	bodies

Prion	amyloid	plaques

Amyotrophic	lateral	
sclerosis	aggregates

Huntington’s	intranuclear	
inclusions



	 		 	 	 	 	ALS	Genome	Sequencing	Consortium
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	 		 	 	 	 	ALS	Genome	Sequencing	Consortium

Project	Goals	
Identify	rare	coding	variants	and	new	
genes/pathways	associated	with	

sporadic	ALS
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Iden%fying	Variants	with		
Exome	Sequencing	

Compare	Variants			
	 	 	 	 	CTACGATCGA		Control	Group	(n=~6500)	
	 	 	 	 	CTAGGATCGA	Affected	Pa%ent	Group	(n=~3000)	

•  Exome	Sequencing:		Iden%fy	varia%on	in	coding	regions	(genes)	
•  Advantage:		Interpretability	and	lower	cost	compared	to	whole	genome	

sequencing	

Intergenic	

Gene	

Exon	
Intron	
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Gene	Burden	Tes+ng	of	Rare	Variants	

Compare	Frequency	Distribu+ons		
	

•  Significant	enrichment	of	qualifying	variants	between	groups	

Count	Qualifying	Variants: 		
	

•  Count	qualifying	variants	in	a	gene-based	collapsing	analysis	including	
exons	mee=ng	coverage	benchmarks		
			Example:		Loss	of	Func=on	(splice,	nonsense,	or	frameshiE)	

Gene	X:		Variant	Enrichment	

Controls	 Cases	

•  SOD1:		First	gene	
associated	with	
familial	ALS	
(enzyme	that	
destroys	free	
superoxide	radicals)	

✔	
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Iden%fying	Novel	ALS	Genes:	TBK1	

Cirulli	&	Lasseigne,	et	al.	2015.	(under	review).		Wild,	et	al.		2011.		Gleason,	et	al.		2011.		Pilli,	et	al.		2012.		Kachaner,	et	al.		2012.		Komatsu,	et	al.		2012.			

RVIS	

•  Non-benign	variants:		
	1.097%	of	cases	

•  LoF	variants:		
	0.382%	of	cases	

LOF	variant	

Case/control	variant	

Missense	variant	
Splice	variant	
Case	variant	
Control	variant	

•  TBK1	interacts	with	other	
ALS-associated	genes	that	
play	important	roles	in	
autophagy	and	
inflammaWon	

	

Amyotrophic	lateral	
sclerosis	aggregates	

Cirulli	&	Lasseigne,	et	al.	2016.	Wild,	et	al.	2011.	Gleason,	et	al.	2011.	Pilli,	et	al.	2012.	Kachaner,	et	al.	2012.	Komatsu,	et	al.	2012.	
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Identifying	Novel	ALS	Genes:	NEK1

QQ	plot:	Dominant	LoF	model
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Cirulli	&	Lasseigne,	et	al.	2015.	(under	review)	Cirulli	&	Lasseigne,	et	al.	2015.	
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Identifying	Novel	ALS	Genes:	NEK1

• NEK1:	multi-functional	
kinase,	role	in	cilia	
formation	and	
centrosome	function,	
never	previously	linked	to	
ALS		

• Follow-up	cohort	(1,318	
additional	cases	and	
2,371	additional	controls)	
further	supports	NEK1’s	
role	in	ALS	predisposition

QQ	plot:	Dominant	LoF	model
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NEK1	associates	with	ALS2	and	VAPB

• To	investigate	binding	partners,	we	performed	
an	unbiased	screen	of	NEK1-interacting	
proteins	in	human	kidney	epithelial	cells	via	
AP-MS	

Cirulli	&	Lasseigne,	et	al.	2015.	(under	review)	Cirulli	&	Lasseigne,	et	al.	2015.	
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• To	investigate	binding	partners,	we	performed	
an	unbiased	screen	of	NEK1-interacting	
proteins	in	human	kidney	epithelial	cells	via	
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followed	by	western	blotting	of	co-expressed	
proteins	in	neuronal	NSC-34	cells
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Recessive	causes	of	ALS	when	mutated:	
ALS2:		RAB	guanine	nucleotide	exchange	factor	
VAPB/VAPA:		transmembrane	proteins	that	transfer	
	 lipids	from	the	ER	to	the	plasma	membrane

Cirulli	&	Lasseigne,	et	al.	2015.	
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• To	investigate	binding	partners,	we	performed	
an	unbiased	screen	of	NEK1-interacting	
proteins	in	human	kidney	epithelial	cells	via	
AP-MS	

• Interactions	validated	by	immunoprecipitation	
followed	by	western	blotting	of	co-expressed	
proteins	in	neuronal	NSC-34	cells

• Suggests	NEK1	may	contribute	to	ALS	through	
multiple	mechanisms:

– ALS2	and	VAPB	control	cytoplasmic	
trafficking	of	endosomes	and	lipids	in	
diverse	cell	lineages,	respectively,	both	
biological	functions	that	are	now	
appreciated	as	important	in	other	
neurodegenerative	diseases

Cirulli	&	Lasseigne,	et	al.	2015.	(under	review)	

Recessive	causes	of	ALS	when	mutated:	
ALS2:		RAB	guanine	nucleotide	exchange	factor	
VAPB/VAPA:		transmembrane	proteins	that	transfer	
	 lipids	from	the	ER	to	the	plasma	membrane

Cirulli	&	Lasseigne,	et	al.	2015.	
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Example	Computational	Biology	Experiments	and	Tasks:

• Example	1:		Identify	Variants	Associated	with	a	Predisposition	to	ALS
• Annotation
• Databasing
• Statistical	Programming	(analysis	+	visualization)
• Hypothesis-Generating	Research

• Example	2:		Develop	Biomarkers	for	Kidney	Cancer	Diagnosis
• Statistical	Programming	(analysis	+	visualization)
• Machine	Learning
• Direct	Clinical	Application
• Interdependent	and	Complementary	‘Wet’/‘Dry’	Biology	Research
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• Statistical	Programming	(analysis	+	visualization)	
• Machine	Learning	
• Direct	Clinical	Application	
• Interdependent	and	Complementary	‘Wet’/‘Dry’	Biology	Research	

• Example	3:	Generate	Pan-Cancer	Models	of	Patient	Prognosis	
• Statistical	Programming	(analysis	+	visualization)	
• Machine	Learning	
• Software	Development	
• Computational	Research	



Kidney	Cancer	Diagnosis	and	Treatment

• 	~65,000	new	cases	in	the	United	States	
each	year	(10th	most	common	cancer)	

• If	caught	early,	patients	typically	do	well			

• Treatment	for	advanced	cases	has	
improved	in	recent	years,		but	the	best	
drugs	only	increase	disease	free	
progression	after	resection	by	months		
and	have	harsh	side	effects	

• Considered	non-responsive	to	
traditional	radiation	and	
chemotherapies

36
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81%	Survival	at	5	years
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• 	~65,000	new	cases	in	the	United	States	
each	year	(10th	most	common	cancer)	

• If	caught	early,	patients	typically	do	well			

• Treatment	for	advanced	cases	has	
improved	in	recent	years,		but	the	best	
drugs	only	increase	disease	free	
progression	after	resection	by	months		
and	have	harsh	side	effects	

• Considered	non-responsive	to	
traditional	radiation	and	
chemotherapies
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53%	Survival	at	5	years



Kidney	Cancer	Diagnosis	and	Treatment

• 	~65,000	new	cases	in	the	United	States	
each	year	(10th	most	common	cancer)	

• If	caught	early,	patients	typically	do	well			

• Treatment	for	advanced	cases	has	
improved	in	recent	years,		but	the	best	
drugs	only	increase	disease	free	
progression	after	resection	by	months		
and	have	harsh	side	effects	

• Considered	non-responsive	to	
traditional	radiation	and	
chemotherapies

36

8%	Survival	at	5	years



Healthy TreatmentCancer Remission

Early	Diagnosis	
cancer-specific	

molecular	defects

Prognosis	&	
Treatment		
molecular		
defects		

predicting	survival	
or		personalized	

treatment

Treatment	Efficacy	
monitor	molecular	

signatures	of	response	or	
resistance	to	treatment

Cancer	Genomics	Research:	
Identifying	Genomic	Changes	Relevant	to	Patient	Care

101	Tumor	and	Normal	Kidney	Samples
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DNA	Methylation	at	CpGs:		The	“Fifth”	Base

38

Cytosine 5-Methyl	Cytosine

Regulates	biological	processes	without	altering	genetic	
blueprint	(DNA	sequence)	

DNA	Methylation	Functions:	
• DNA-protein	interactions	
• Cellular	differentiation	
• Transposable	element	suppression	
• X-inactivation	
• Genomic	imprinting	
• Gene	regulation	

• DNA	methylation	as	early	diagnostic	biomarkers:	
• 	Early	events	in	carcinogenesis	
• 	Stable	DNA	mark	and	can	be	quantitatively	

measured	



Diagnostic	DNA	Methylation	Biomarkers:		Kidney	Cancer
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Lasseigne,	et	al.		BMC	Cancer,	2014.		
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Kidney	Cancer	Diagnostic	Model

TCGA	data	as	a	validation	test	set: 
								-732	kidney	cancer	tissues	
	 	 (3	subtypes!)  
								-410	normal	kidney	tissues 

Lasseigne,	et	al.		BMC	Cancer,	2014.		
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Kidney	Cancer	Diagnostic	Model

TCGA	data	as	a	validation	test	set: 
								-732	kidney	cancer	tissues	
	 	 (3	subtypes!)  
								-410	normal	kidney	tissues 

 
 

Correctly	predict	87.8%	of	the	
normal	tissues	and	96.2%	of	the	
tumor	tissues	in	the	TCGA	data	

Lasseigne,	et	al.		BMC	Cancer,	2014.		



From Bench To Bedside: 
’liquid biopsies’ from peripheral fluids

Cell-free	DNA

Blood	Test

Urine	Test

Patient	with	
Kidney	cancer

•Early	diagnosis	for	non-specific		symptoms		

•Clarify	between	small	benign	lesions	and	
malignant	tumors	

•Follow	patients	after	surgery	or	during	
treatment	to	watch	for	recurrence	

•Monitor	molecular	changes	associated	
with	patient	outcome
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Example	Computational	Biology	Experiments	and	Tasks:

• Example	1:		Identify	Variants	Associated	with	a	Predisposition	to	ALS
• Annotation
• Databasing
• Statistical	Programming	(analysis	+	visualization)
• Hypothesis-Generating	Research

• Example	2:		Develop	Biomarkers	for	Kidney	Cancer	Diagnosis
• Statistical	Programming	(analysis	+	visualization)
• Machine	Learning
• Direct	Clinical	Application
• Interdependent	and	Complementary	‘Wet’/‘Dry’	Biology	Research

• Example	3:	Generate	Pan-Cancer	Models	of	Patient	Prognosis
• Statistical	Programming	(analysis	+	visualization)
• Machine	Learning
• Software	Development
• Computational	Research	
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Example	Computational	Biology	Experiments	and	Tasks:	

• Example	1:		Identify	Variants	Associated	with	a	Predisposition	to	ALS	
• Annotation	
• Databasing	
• Statistical	Programming	(analysis	+	visualization)	
• Hypothesis-Generating	Research	

• Example	2:		Develop	Biomarkers	for	Kidney	Cancer	Diagnosis	
• Statistical	Programming	(analysis	+	visualization)	
• Machine	Learning	
• Direct	Clinical	Application	
• Interdependent	and	Complementary	‘Wet’/‘Dry’	Biology	Research	

• Example	3:	Generate	Pan-Cancer	Models	of	Patient	Prognosis	
• Statistical	Programming	(analysis	+	visualization)	
• Machine	Learning	
• Software	Development	
• Computational	Research	



Cell	proliferation	is	fundamental	to	cancer

Hanahan	&	Weinberg,	Cell,	2000.		
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Measuring	cell	proliferation	from	RNA-seq	data

• Venet,	et	al.	cell	proliferation	‘metagene’:	
-Median	of	top	1%	of	genes	associated	
with	PCNA	expression	(essential	for	
replication)	

‘Proliferative	Index’	(PI):			
relative	expression	of	proliferation-

associated	genes

PI/metaPCNA:		Ge,	et	al,	Genomics	2005	and	Venet,	et	al,	PLOS	Computational	Biology,	2011
45
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Measuring	cell	proliferation	from	RNA-seq	data

• Venet,	et	al.	cell	proliferation	‘metagene’:	
-Median	of	top	1%	of	genes	associated	
with	PCNA	expression	(essential	for	
replication)	

‘Proliferative	Index’	(PI):			
relative	expression	of	proliferation-

associated	genes

PI/metaPCNA:		Ge,	et	al,	Genomics	2005	and	Venet,	et	al,	PLOS	Computational	Biology,	2011
46

post-mitotic	tissues	
ex.	skeletal	muscle
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Measuring	cell	proliferation	from	RNA-seq	data

• Venet,	et	al.	cell	proliferation	‘metagene’:	
-Median	of	top	1%	of	genes	associated	
with	PCNA	expression	(essential	for	
replication)	

‘Proliferative	Index’	(PI):			
relative	expression	of	proliferation-

associated	genes

PI/metaPCNA:		Ge,	et	al,	Genomics	2005	and	Venet,	et	al,	PLOS	Computational	Biology,	2011
47

post-mitotic	tissues	
ex.	skeletal	muscle

high	cell	turnover	
ex.	skin



Examine	the	role	of	cell	proliferation	in	
patient	outcomes	across	cancers	

catalogued	by	The	Cancer	Genome	Atlas

48



Abbreviation Cancer n

ACC Adrenocortical	Carcinoma 79

BLCA Bladder	Urothelial	Carcinoma 385

BRCA Breast	Invasive	Carcinoma 1038

CESC Cervical	Squamous	Cell	Carcinoma	and	Endocervical	Adenocarcinoma 393

ESCA Esophageal	Carcinoma 163

GBM Glioblastoma	Multiforme 144

HNSC Head	and	Neck	Squamous	Cell	Carcinoma 508

KIRC Kidney	Renal	Clear	Cell	Carcinoma 525

KIRP Kidney	Renal	Papillary	Cell	Carcinoma 266

LAML Acute	Myeloid	Leukemia 148

LGG Brain	Lower	Grade	Glioma 463

LIHC Liver	Hepatocellular	Carcinoma 355

LUAD Lung	Adenocarcinoma 493

LUSC Lung	Squamous	Cell	Carcinoma 479

MESO Mesothelioma 72

OV Ovarian	Serous	Cystadenocarcinoma 252

PAAD Pancreatic	Adenocarcinoma 167

SARC Sarcoma 248

STAD Stomach	Adenocarcinoma 403

Total:		19	Cancers,	6581	Patients

The	TCGA	Dataset

49



‘Common	Survival	Genes’	across	19	cancers

• ‘Common	Survival	Genes’	
Cox	regression	uncorrected	p-value	
<0.05	for	a	gene	in	at	least	9/19	
cancers:	

• 84	genes,	enriched	for	
proliferation-related	
processes	including	mitosis,	
cell	and	nuclear	division,	and	
spindle	formation		

• Clustering	by	Cox	regression	p-
values	identifies	2	distinct	groups:			
7	‘Proliferative	Informative	
Cancers’	and	12	‘Non-Proliferative	
Informative	Cancers’	

51Ramaker	&	Lasseigne,	et	al.	2017.



Scaled -log10 Cox p-value

-1 2 30 1

‘Common	Survival	Genes’	across	19	cancers

• ‘Common	Survival	Genes’	
Cox	regression	uncorrected	p-value	
<0.05	for	a	gene	in	at	least	9/19	
cancers:	

• 84	genes,	enriched	for	
proliferation-related	processes	
including	mitosis,	cell	and	
nuclear	division,	and	spindle	
formation		

• Clustering	by	Cox	regression	p-
values:		
7	‘Proliferative	Informative	Cancers’	
and	12	‘Non-Proliferative	Informative	
Cancers’	
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Scaled -log10 Cox p-value

-1 2 30 1

‘Common	Survival	Genes’	across	19	cancers
Proliferative	Inform

ative	Cancers	
	(PICs)
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• ‘Common	Survival	Genes’	
Cox	regression	uncorrected	p-value	
<0.05	for	a	gene	in	at	least	9/19	
cancers:	

• 84	genes,	enriched	for	
proliferation-related	processes	
including	mitosis,	cell	and	
nuclear	division,	and	spindle	
formation		

• Clustering	by	Cox	regression	p-
values:			
7	‘Proliferative	Informative	Cancers’	
and	12	‘Non-Proliferative	Informative	
Cancers’	

Ramaker	&	Lasseigne,	et	al.	2017.



Scaled -log10 Cox p-value

-1 2 30 1

‘Common	Survival	Genes’	across	19	cancers
Proliferative	Inform

ative	Cancers	
	(PICs)
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• ‘Common	Survival	Genes’	
Cox	regression	uncorrected	p-value	
<0.05	for	a	gene	in	at	least	9/19	
cancers:	

• 84	genes,	enriched	for	
proliferation-related	processes	
including	mitosis,	cell	and	
nuclear	division,	and	spindle	
formation		

• Clustering	by	Cox	regression	p-
values:			
7	‘Proliferative	Informative	Cancers’	
and	12	‘Non-Proliferative	Informative	
Cancers’	

Ramaker	&	Lasseigne,	et	al.	2017.
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Cross-Cancer	Patient	Outcome	Model

Cox	
regression	

with	
LASSO	
feature	
selection

~20,000	gene	
expression	

values	
Cancer	Patient	

Survival

Survival~	-0.104	+	0.086*ADAM12	
+	0.037*CKS1	-	0.088*CRYL1	+	
0.056*DNA2	+	0.013*DONSON	+	
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Ramaker	&	Lasseigne,	et	al.	2017.

Utility:	
• Predict	patient	prognosis	
• Potentially	inform	on	treatments	
• Use	of	metagenes	to	infer	molecular	
profiles	from	gene	expression	data



Analysis	Packages:	e.g.	‘ProliferativeIndex’

56Ramaker	&	Lasseigne,	et	al.	Oncotarget,	2017.

• Analytical	R	package	available	on	
CRAN	and	GitHub	(continuous	
integration	with	Travis	CI)	

• Documented	functions	and	a	
vignette	with	examples	

• Provides	users	with	R	functions	for	
calculating	and	analyzing	the	
proliferative	index	(PI)	from	an	RNA-
seq	dataset
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Example	Computational	Biology	Experiments	and	Tasks:

• Example	1:		Identify	Variants	Associated	with	a	Predisposition	to	ALS
• Annotation
• Databasing
• Statistical	Programming	(analysis	+	visualization)
• Hypothesis-Generating	Research

• Example	2:		Develop	Biomarkers	for	Kidney	Cancer	Diagnosis
• Statistical	Programming	(analysis	+	visualization)
• Machine	Learning
• Clinical	Application
• Interdependent	and	Complementary	‘Wet’/‘Dry’	Biology	Research

• Example	3:	Generate	Pan-Cancer	Models	of	Patient	Prognosis
• Statistical	Programming	(analysis	+	visualization)
• Machine	Learning
• Software	Development
• Computational	Research	



Take-Home	Message
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make	data	driven	predictions	or	discover	patterns	without	explicit	human	intervention	(algorithms	are	implemented	in	code)

• Machine	learning	is	useful	when	we	have	complex	problems	with	lots	of	‘big’	data

• ‘Wet	lab’	and	‘dry	lab’	biology	inform	one	another—>both	are	biology!
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Genomics	Requires	Team	and	Individual	Expertise	in	Many	Disciplines	Because	We	Are	Addressing	
Complicated	Questions
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Molecular	Biology/

Genetics

Engineering

Computational	Biology

Computational	Infrastructure	
(IT)
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yi = βo +β1x1i +β2x2 i +β3x3i
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etc….
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GENOMICS
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PSA:	Any	Research	Experience	is	Useful	When	You’re	Starting	Out

• Catfish	virus	genes	increasing	disease	susceptibility	
• Using	bacteria	to	clean	hydrocarbons	from	ship	bilge	water	
• Hormone	effect	on	kidney	mitochondria	and	obesity	
• Reverse	engineering	electromagnetic	flow	probes	
• Using	bacteria	to	produce	ethanol		
• Mechanisms	of	oxidative	stress	in	the	brain



61

Thanks!	Slides	available	at		
https://www.lasseigne.org/post/2018-06-04-

biotraincompbioworkshop2018/

Brittany	N.	Lasseigne,	PhD	
@bnlasse					blasseigne@hudsonalpha.org


