An Introduction to Biology with Computers

Brittany N. Lasseigne, PhD HudsonAlpha Intstitute for Biotechnology 4 June 2018

@bnlasse <u>blasseigne@hudsonalpha.org</u>

- My background
- 'Genomical' Data: the Necessity of Biology with Computers
- Introduction to Bioinformatics and Computational Biology
- Applications of Computational Biology in Genomics

My background

WAYS OF INTRODUCING YOURSELF ...

My Education

My Education

The Mississippi School for Mathematics and Science An Opportunity for Excellence

BS: Biological Engineering

My Education

The Mississippi School for Mathematics and Science An Opportunity for Excellence

BS: Biological Engineering

Postdoctoral Fellow & Senior Scientist

Postdoctoral Fellow & Senior Scientist

HudsonAlpha Institute for Biotechnology, 2014-present

 Applying machine learning, big data integraiton and genomics to complex human disease to improve disease prevention, detection, treatment, and monitoring

- My background
- 'Genomical' Data: the Necessity of Biology with Computers
- Introduction to Bioinformatics and Computational Biology
- Applications of Computational Biology in Genomics

"And that's why we need a computer."

combination of genetic, environmental and lifetyle factors (most of which have not yet been identified)

combination of genetic, environmental and lifetyle factors (most of which have not yet been identified)

Cancer:

- Men have a 1 in 2 lifetime risk of developing cancer
- Women have a 1 in 3 lifetime risk of developing cancer

combination of genetic, environmental and lifetyle factors (most of which have not yet been identified)

Cancer:

- Men have a 1 in 2 lifetime risk of developing cancer
- Women have a 1 in 3 lifetime risk of developing cancer

Psychiatric Illness:

- 1 in 4 adults suffer from a diagnosable mental disorder each year
- ~6% suffer serious disabilities as a result

combination of genetic, environmental and lifetyle factors (most of which have not yet been identified)

Cancer:

- Men have a 1 in 2 lifetime risk of developing cancer
- Women have a 1 in 3 lifetime risk of developing cancer

Psychiatric Illness:

- 1 in 4 adults suffer from a diagnosable mental disorder each year
- ~6% suffer serious disabilities as a result

Neurodegenerative Disease:

 ~6.5M Americans suffer from a neurodegenerative disease; expected to rise to 12M by 2030

combination of genetic, environmental and lifetyle factors (most of which have not yet been identified)

Cancer:

- Men have a 1 in 2 lifetime risk of developing cancer
- Women have a 1 in 3 lifetime risk of developing cancer

Psychiatric Illness:

- 1 in 4 adults suffer from a diagnosable mental disorder each year
- ~6% suffer serious disabilities as a result

Neurodegenerative Disease:

 ~6.5M Americans suffer from a neurodegenerative disease; expected to rise to 12M by 2030

Identify genetic/genomic variation associated with disease to improve patient care

Identify genetic/genomic variation associated with disease to improve patient care

- Which patients are high risk for developing cancer?
- What are early biomarkers of cancer?
- Which patients are likely to be short/long term cancer survivers?
- What chemotherapeutic might a cancer patient benefit from?

Multidimensional Data Sets

Cells, Tissues, & Diseases

Cells, Tissues, & Diseases

Functional Annotations

Case Study: The Cancer Genome Atlas

- Mulitiple data types for 11,000+ patients
- 549,625 files with 2000+ metadata attributes
- · >2.5 Petabytes of data

- My background
- 'Genomical' Data: the Necessity of Biology with Computers
- Introduction to Bioinformatics and Computational Biology

"Twitter and Facebook can't predict the election, but they did predict what you're going to have for lunch: a tuna salad sandwich. You're having the wrong sandwich."

 Applications of Computational Biology in Genomics

- We have lots of data and complex problems
- We want to manage lots of data and make data-driven predictions
Multidimensional Data Sets

Cells, Tissues, & Diseases

Functional Annotations

Computer Science + Mathematics

*Disclaimer: My Opinion

• Computational biology is the application of computer science and mathematics to problems in biology

- Computational biology is the application of computer science and mathematics to problems in biology
 - Not just genomics! e.g., biophysics, biochemistry, etc.

- Computational biology is the application of computer science and mathematics to problems in biology
 - Not just genomics! e.g., biophysics, biochemistry, etc.
- The terms 'bioinformatics' and 'computational biology' are often used interchangeably:

- Computational biology is the application of computer science and mathematics to problems in biology
 - Not just genomics! e.g., biophysics, biochemistry, etc.
- The terms 'bioinformatics' and 'computational biology' are often used interchangeably:
 - **Bioinformatics** is often associated with the development of software tools, databases, and visualization methods

- Computational biology is the application of computer science and mathematics to problems in biology
 - Not just genomics! e.g., biophysics, biochemistry, etc.
- The terms 'bioinformatics' and 'computational biology' are often used interchangeably:
 - **Bioinformatics** is often associated with the development of software tools, databases, and visualization methods
 - **Computational biology** is often used to describe data analysis, algorithm development, and mathematical modeling

*Disclaimer: My Opinion

- Computational biology is the application of computer science and mathematics to problems in biology
 - Not just genomics! e.g., biophysics, biochemistry, etc.
- The terms 'bioinformatics' and 'computational biology' are often used interchangeably:
 - **Bioinformatics** is often associated with the development of software tools, databases, and visualization methods
 - **Computational biology** is often used to describe data analysis, algorithm development, and mathematical modeling

Other terms you might hear to describe the interdiscipinary field of biology/math/computer science:

*Disclaimer: My Opinion

- Computational biology is the application of computer science and mathematics to problems in biology
 - Not just genomics! e.g., biophysics, biochemistry, etc.
- The terms 'bioinformatics' and 'computational biology' are often used interchangeably:
 - **Bioinformatics** is often associated with the development of software tools, databases, and visualization methods
 - **Computational biology** is often used to describe data analysis, algorithm development, and mathematical modeling

Other terms you might hear to describe the interdiscipinary field of biology/math/computer science:

Data Science, Systems Biology, Statistical Biology, Biostatistics, and Genomics (implicit)

Computational people can work from anywhere... but that also means they can work from anywhere

Computational people can work from anywhere... but that also means they can work from anywhere

Generally computational skills are:

- In demand
- Flexible
- Highly transferable

Computational Biology <u>IS</u> Biology!

Multidimensional Data Sets

Cells, Tissues, & Diseases

Functional Annotations

• data analysis method that automates analytical model building

- data analysis method that automates analytical model building
- make data driven predictions or discover patterns without explicit human intervention

- data analysis method that automates analytical model building
- make data driven **predictions** or discover **patterns** without explicit human intervention
- Useful when have complex problems and lots of data ('big data')

- data analysis method that automates analytical model building
- make data driven **predictions** or discover **patterns** without explicit human intervention
- Useful when have complex problems and lots of data ('big data')

- data analysis method that automates analytical model building
- make data driven predictions or discover patterns without explicit human intervention
- Useful when have complex problems and lots of data ('big data')

- data analysis method that automates analytical model building
- make data driven predictions or discover patterns without explicit human intervention
- Useful when have complex problems and lots of data ('big data')

• Our goal isn't to make perfect guesses, but to make useful guesses—we want to build a model that is useful for the future

-Prediction Ex. linear & logistic regression **Unsupervised Learning:**

-Find patterns Ex. Clustering, Principle Component Analysis

-Prediction Ex. linear & logistic regression **Unsupervised Learning:**

-Find patterns Ex. Clustering, Principle Component Analysis

-Prediction Ex. linear & logistic regression **Unsupervised Learning:**

-Find patterns Ex. Clustering, Principle Component Analysis

-Prediction Ex. linear & logistic regression **Unsupervised Learning:**

-Find patterns Ex. Clustering, Principle Component Analysis

-Prediction Ex. linear & logistic regression **Unsupervised Learning:**

-Find patterns Ex. Clustering, Principle Component Analysis

-Prediction Ex. linear & logistic regression

Known Data + Known Response

NEW DATA

Unsupervised Learning:

-Find patterns Ex. Clustering, Principle Component Analysis

Uncategorized Data

-Prediction Ex. linear & logistic regression

Known Data + Known Response

Unsupervised Learning:

-Find patterns Ex. Clustering, Principle Component Analysis

Uncategorized Data

Clusters of Categorized Data

Mail Sorting

Mail Sorting

Recommendation Engine

Example Computational Biology Experiments and Tasks:

Example Computational Biology Experiments and Tasks:

• Example 1: Identify Variants Associated with a Predisposition to ALS

Amyotrophic Lateral Sclerosis (ALS)

- Also known as Lou Gehrig's disease
- Progressive neurodegenerative disease causing muscle weakness and atrophy due to degeneration of motor neurons
- ~5,600 new cases in the US annually
- Median survival time from onset to death is 39 months

89% of sporadic ALS cases are not explained by known genetic alterations

Genetic subtype	Chromosomal locus	Gene	Protein	Onset	Inheritance	Clinical feature	Other diseases caused by the gene
ALS1	21q22.1	SOD1	Cu/Zn SOD-1	Adult	AD/AR	Typical ALS	NA
ALS2	2q33-2q35	Alsin	Alsin	Juv	AR	Slowly progressive, predominantly UMN signs like limb, & facial spasticity	PLS IAHSP
ALS3	18q21	Unknown	Unknown	Adu	AD	Typical ALS with limb onset especially lower limb	NA
ALS4	9q34	SETX	Senataxin	Juv	AD	Slowly progressive, distal hereditary motor neuropathy with pyramidal signs	SCAR 1 and AOA2
ALS5	15q15-21	SPG 11	Spatacsin	Juv	AR	Slowly progressive	HSP
ALS6	16p11.2	FUS	Fused in Sarcoma	Juv/Adu	AD/AR	Typical ALS	NA
ALS8	20q13.3	VAPB	VAPB	Adu	AD	Typical and atypical ALS	SMA
ALS9	14q11.2	ANG	Angiogenin	Adu	AD	Typical ALS, FTD and Parkinsonism	NA
ALS10	1p36.2	TARDBP	DNA-binding protein	Adu	AD	Typical ALS	NA
ALS11	6q21	FIG 4	Phosphoinositide- 5phosphatease	Adu	AD	Rapid progressive with prominent corticospinal tract signs	CMT 4 J
ALS12	10p13	OPTN	Optineurin	Adu	AD/AR	Slowly progressive with limb onset and predominant UMN signs	Primary Open Angle Glaucoma
ALS14	9p13.3	VCP	VCP	Adu	AD	Adult onset, with or without FTD	IBMPFD
ALS15/ ALSX	Xp11	UBQLN2	Ubiquilin 2	Adu/Juv	XD	UMN signs proceeding LMN signs	NA
ALS16	9p13.2-21.3	SIGMAR1	SIGMAR1	Juv	AR	Juvenile onset typical ALS	FTD
ALS-FTD1	9q21-22	unknown	unknown	Adu	AD	ALS with FTD	FTD
ALS-FTD2	9p21	C9ORF72	C9ORF72	Adu	AD	ALS with FTD	FTD
NA	2p13	DCTN1	Dynactin	Adu	AD	Distal hereditary motor neuropathy with vocal paresis	NA
Other rare	occurring ALS	genes					
ALS3	18q21	Unknown	Unknown	Adu	AD	Typical ALS with limb onset especially lower limb	NA
ALS7	20ptel-p13	Unknown	Unknown	Adu	AD/AR	Typical ALS	NA
NA	12q22-23	DAO	DAO	Adu	AD	Typical ALS	NA

Heterogeneous symptoms, progression, and genetic mutations 20+ Distinct ALS Subtypes

Neurotoxic Protein Aggregates in >95% of ALS Patients

Alzheimer's plaques

Parkinson's Lewy bodies

Huntington's intranuclear inclusions

Amyotrophic lateral sclerosis aggregates

Prion amyloid plaques

ALS Genome Sequencing Consortium

ALS Genome Sequencing Consortium

Project Goals

Identify rare coding variants and new genes/pathways associated with sporadic ALS

Identifying Variants with Exome Sequencing

- <u>Exome Sequencing</u>: Identify variation in coding regions (genes)
- Advantage: Interpretability and lower cost compared to whole genome sequencing

<u>Compare Variants</u> CTACGATCGA Control Group (n=~6500) CTAGGATCGA Affected Patient Group (n=~3000)

Gene Burden Testing of Rare Variants

Count Qualifying Variants:

• Count qualifying variants in a gene-based collapsing analysis including exons meeting coverage benchmarks

Example: Loss of Function (splice, nonsense, or frameshift)

Compare Frequency Distributions

• Significant enrichment of qualifying variants between groups

Gene Burden Testing of Rare Variants

Count Qualifying Variants:

 Count qualifying variants in a gene-based collapsing analysis including exons meeting coverage benchmarks

Example: Loss of Function (splice, nonsense, or frameshift)

Compare Frequency Distributions

• Significant enrichment of qualifying variants between groups

Identifying Novel ALS Genes: TBK1

 TBK1 interacts with other ALS-associated genes that play important roles in autophagy and inflammation

Amyotrophic lateral sclerosis aggregates

Identifying Novel ALS Genes: NEK1

QQ plot: Dominant LoF model

Identifying Novel ALS Genes: NEK1

- NEK1: multi-functional kinase, role in cilia formation and centrosome function, never previously linked to ALS
- Follow-up cohort (1,318 additional cases and 2,371 additional controls) further supports *NEK1*'s role in ALS predisposition

QQ plot: Dominant LoF model

 To investigate binding partners, we performed an unbiased screen of NEK1-interacting proteins in human kidney epithelial cells via AP-MS

 To investigate binding partners, we performed an unbiased screen of NEK1-interacting proteins in human kidney epithelial cells via AP-MS

- To investigate binding partners, we performed an unbiased screen of NEK1-interacting proteins in human kidney epithelial cells via AP-MS
- Interactions validated by immunoprecipitation followed by western blotting of co-expressed proteins in neuronal NSC-34 cells

Recessive causes of ALS when mutated:

ALS2: RAB guanine nucleotide exchange factorVAPB/VAPA: transmembrane proteins that transfer lipids from the ER to the plasma membrane

- To investigate binding partners, we performed an unbiased screen of NEK1-interacting proteins in human kidney epithelial cells via AP-MS
- Interactions validated by immunoprecipitation followed by western blotting of co-expressed proteins in neuronal NSC-34 cells
- Suggests *NEK1* may contribute to ALS through multiple mechanisms:
 - ALS2 and VAPB control cytoplasmic trafficking of endosomes and lipids in diverse cell lineages, respectively, both biological functions that are now appreciated as important in other neurodegenerative diseases

Recessive causes of ALS when mutated:

ALS2: RAB guanine nucleotide exchange factorVAPB/VAPA: transmembrane proteins that transfer lipids from the ER to the plasma membrane

Example Computational Biology Experiments and Tasks:

- Example 1: Identify Variants Associated with a Predisposition to ALS
 - Annotation
 - Databasing
 - Statistical Programming (analysis + visualization)
 - Hypothesis-Generating Research

Example Computational Biology Experiments and Tasks:

• Example 1: Identify Variants Associated with a Predisposition to ALS

- Annotation
- Databasing
- Statistical Programming (analysis + visualization)
- Hypothesis-Generating Research

• Example 2: Develop Biomarkers for Kidney Cancer Diagnosis

- ~65,000 new cases in the United States each year (10th most common cancer)
- If caught early, patients typically do well
- Treatment for advanced cases has improved in recent years, but the best drugs only increase disease free progression after resection by months and have harsh side effects
- Considered non-responsive to traditional radiation and chemotherapies

- ~65,000 new cases in the United States each year (10th most common cancer)
- If caught early, patients typically do well
- Treatment for advanced cases has improved in recent years, but the best drugs only increase disease free progression after resection by months and have harsh side effects
- Considered non-responsive to traditional radiation and chemotherapies

81% Survival at 5 years

- ~65,000 new cases in the United States each year (10th most common cancer)
- If caught early, patients typically do well
- Treatment for advanced cases has improved in recent years, but the best drugs only increase disease free progression after resection by months and have harsh side effects
- Considered non-responsive to traditional radiation and chemotherapies

74% Survival at 5 years

36

- ~65,000 new cases in the United States each year (10th most common cancer)
- If caught early, patients typically do well
- Treatment for advanced cases has improved in recent years, but the best drugs only increase disease free progression after resection by months and have harsh side effects
- Considered non-responsive to traditional radiation and chemotherapies

53% Survival at 5 years

- ~65,000 new cases in the United States each year (10th most common cancer)
- If caught early, patients typically do well
- Treatment for advanced cases has improved in recent years, but the best drugs only increase disease free progression after resection by months and have harsh side effects
- Considered non-responsive to traditional radiation and chemotherapies

8% Survival at 5 years

Cancer Genomics Research: Identifying Genomic Changes Relevant to Patient Care

101 Tumor and Normal Kidney Samples

Early Diagnosis cancer-specific molecular defects Prognosis &Treatment EfficacyTreatmentmonitor molecularmolecularsignatures of response ordefectsresistance to treatmentpredicting survivalor personalizedtreatment

Cancer Genomics Research: Identifying Genomic Changes Relevant to Patient Care

101 Tumor and Normal Kidney Samples

Early Diagnosis cancer-specific molecular defects Prognosis &Treatment EfficacyTreatmentmonitor molecularmolecularsignatures of response ordefectsresistance to treatmentpredicting survivalor personalizedtreatment

DNA Methylation at CpGs: The "Fifth" Base

Regulates biological processes without altering genetic blueprint (DNA sequence)

DNA Methylation Functions:

- DNA-protein interactions
- Cellular differentiation
- Transposable element suppression
- X-inactivation
- Genomic imprinting
- Gene regulation
- DNA methylation as early diagnostic biomarkers:
 - Early events in carcinogenesis
 - Stable DNA mark and can be quantitatively measured

Diagnostic DNA Methylation Biomarkers: Kidney Cancer

All Subtypes

Lasseigne, et al. BMC Cancer, 2014.

Diagnostic DNA Methylation Biomarkers: Kidney Cancer

All Subtypes

Lasseigne, et al. BMC Cancer, 2014.

Kidney Cancer Diagnostic Model

TCGA data as a validation test set: -732 kidney cancer tissues (3 subtypes!) -410 normal kidney tissues

Kidney Cancer Diagnostic Model

TCGA data as a validation test set: -732 kidney cancer tissues (3 subtypes!) -410 normal kidney tissues

Kidney Cancer Diagnostic Model

TCGA data as a validation test set: -732 kidney cancer tissues (3 subtypes!) -410 normal kidney tissues

Correctly predict 87.8% of the normal tissues and 96.2% of the tumor tissues in the TCGA data

From Bench To Bedside: 'liquid biopsies' from peripheral fluids

Example Computational Biology Experiments and Tasks:

• Example 1: Identify Variants Associated with a Predisposition to ALS

- Annotation
- Databasing
- Statistical Programming (analysis + visualization)
- Hypothesis-Generating Research
- Example 2: Develop Biomarkers for Kidney Cancer Diagnosis
 - Statistical Programming (analysis + visualization)
 - Machine Learning
 - Direct Clinical Application
 - Interdependent and Complementary 'Wet'/'Dry' Biology Research

Example Computational Biology Experiments and Tasks:

• Example 1: Identify Variants Associated with a Predisposition to ALS

- Annotation
- Databasing
- Statistical Programming (analysis + visualization)
- Hypothesis-Generating Research
- Example 2: Develop Biomarkers for Kidney Cancer Diagnosis
 - Statistical Programming (analysis + visualization)
 - Machine Learning
 - Direct Clinical Application
 - Interdependent and Complementary 'Wet'/'Dry' Biology Research
- Example 3: Generate Pan-Cancer Models of Patient Prognosis

Cell proliferation is fundamental to cancer

Measuring cell proliferation from RNA-seq data

 Venet, et al. cell proliferation 'metagene': -Median of top 1% of genes associated with PCNA expression (essential for replication)

<u>'Proliferative Index' (PI)</u>: relative expression of proliferationassociated genes

PI/metaPCNA: Ge, et al, Genomics 2005 and Venet, et al, PLOS Computational Biology, 2011

Measuring cell proliferation from RNA-seq data

Proliferation Index (Counts/Million) • Venet, et al. cell proliferation 'metagene': -Median of top 1% of genes associated with PCNA expression (essential for replication) 'Proliferative Index' (PI): relative expression of proliferationassociated genes post-mitotic tissues ex. skeletal muscle

PI/metaPCNA: Ge, et al, Genomics 2005 and Venet, et al, PLOS Computational Biology, 2011

'Healthy' GTEx Tissues

Measuring cell proliferation from RNA-seq data

'Healthy' GTEx Tissues

Proliferation Index (Counts/Million) • Venet, et al. cell proliferation 'metagene': -Median of top 1% of genes associated with PCNA expression (essential for replication) 'Proliferative Index' (PI): relative expression of proliferationassociated genes high cell turnover post-mitotic tissues ex. skeletal muscle ex. skin

PI/metaPCNA: Ge, et al, Genomics 2005 and Venet, et al, PLOS Computational Biology, 2011
Examine the role of cell proliferation in patient outcomes across cancers catalogued by The Cancer Genome Atlas

The TCGA Dataset

Abbreviation	Cancer	n
ACC	Adrenocortical Carcinoma	79
BLCA	Bladder Urothelial Carcinoma	385
BRCA	Breast Invasive Carcinoma	1038
CESC	Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma	393
ESCA	Esophageal Carcinoma	163
GBM	Glioblastoma Multiforme	144
HNSC	Head and Neck Squamous Cell Carcinoma	508
KIRC	Kidney Renal Clear Cell Carcinoma	525
KIRP	Kidney Renal Papillary Cell Carcinoma	266
LAML	Acute Myeloid Leukemia	148
LGG	Brain Lower Grade Glioma	463
LIHC	Liver Hepatocellular Carcinoma	355
LUAD	Lung Adenocarcinoma	493
LUSC	Lung Squamous Cell Carcinoma	479
MESO	Mesothelioma	72
OV	Ovarian Serous Cystadenocarcinoma	252
PAAD	Pancreatic Adenocarcinoma	167
SARC	Sarcoma	248
STAD	Stomach Adenocarcinoma	403

Total: 19 Cancers, 6581 Patients

- 'Common Survival Genes' Cox regression uncorrected p-value
 <0.05 for a gene in at least 9/19 cancers:
 - 84 genes, enriched for proliferation-related processes including mitosis, cell and nuclear division, and spindle formation

- 'Common Survival Genes' Cox regression uncorrected p-value
 <0.05 for a gene in at least 9/19 cancers:
 - 84 genes, enriched for proliferation-related processes including mitosis, cell and nuclear division, and spindle formation
- Clustering by Cox regression pvalues:

- 'Common Survival Genes' Cox regression uncorrected p-value
 <0.05 for a gene in at least 9/19 cancers:
 - 84 genes, enriched for proliferation-related processes including mitosis, cell and nuclear division, and spindle formation
- Clustering by Cox regression pvalues:

7 'Proliferative Informative Cancers' and 12 'Non-Proliferative Informative Cancers'

- 'Common Survival Genes' Cox regression uncorrected p-value
 <0.05 for a gene in at least 9/19 cancers:
 - 84 genes, enriched for proliferation-related processes including mitosis, cell and nuclear division, and spindle formation
- Clustering by Cox regression pvalues:

7 'Proliferative Informative Cancers' and 12 'Non-Proliferative Informative Cancers' Non-Proliferative Informative Cancers Non-PICs

Cross-Cancer Patient Outcome Model

Cross-Cancer Patient Outcome Model

Ramaker & Lasseigne, et al. 2017.

Cross-Cancer Patient Outcome Model

Analysis Packages: e.g. 'ProliferativeIndex'

- Analytical R package available on CRAN and GitHub (continuous integration with Travis CI)
- Documented functions and a vignette with examples
- Provides users with R functions for calculating and analyzing the proliferative index (PI) from an RNAseq dataset

compareModeltoPI function

The function compareModeltoPI will take, as input, the user's data and model identifiers and compare to PI:

modelComparison<-compareModeltoPI(exampleTCGAData, proliferativeIndices)</pre>

	SpearmanRho	SpearmanPvalue	PCAPropOfVariance
PC1	-0.1706670	0.1324595	0.44799
PC2	0.1009250	0.3753928	0.08169
PC3	0.0541626	0.6347829	0.04912
PC4	-0.2893379	0.0099231	0.04025
PC5	-0.1059396	0.3520354	0.03288
PC6	-0.1822055	0.1079531	0.02686
PC7	-0.4116115	0.0001866	0.02272
PC8	0.1556962	0.1703124	0.02070
PC9	-0.2600779	0.0208781	0.01918
PC10	-0.0916504	0.4210060	0.01803

Example Computational Biology Experiments and Tasks:

• Example 1: Identify Variants Associated with a Predisposition to ALS

- Annotation
- Databasing
- Statistical Programming (analysis + visualization)
- Hypothesis-Generating Research

• Example 2: Develop Biomarkers for Kidney Cancer Diagnosis

- Statistical Programming (analysis + visualization)
- Machine Learning
- Clinical Application
- Interdependent and Complementary 'Wet'/'Dry' Biology Research
- Example 3: Generate Pan-Cancer Models of Patient Prognosis
 - Statistical Programming (analysis + visualization)
 - Machine Learning
 - Software Development
 - Computational Research

• Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis, prognosis, and treatment efficacy

- Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis, prognosis, and treatment efficacy
- Computers and math are necessary to advance biological research (may be referred to as computational biology, bioinformatics, systems biology, data science, statistical biology, biostatistics, etc.)

- Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis, prognosis, and treatment efficacy
- Computers and math are necessary to advance biological research (may be referred to as computational biology, bioinformatics, systems biology, data science, statistical biology, biostatistics, etc.)
- Machine learning is a data analysis method (and subfield of computer science) that automate analytical model building to make data driven **predictions** or discover **patterns** without explicit human intervention (algorithms are implemented in code)

- Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis, prognosis, and treatment efficacy
- Computers and math are necessary to advance biological research (may be referred to as computational biology, bioinformatics, systems biology, data science, statistical biology, biostatistics, etc.)
- Machine learning is a data analysis method (and subfield of computer science) that automate analytical model building to make data driven **predictions** or discover **patterns** without explicit human intervention (algorithms are implemented in code)

Traditional Programming

- Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis, prognosis, and treatment efficacy
- Computers and math are necessary to advance biological research (may be referred to as computational biology, bioinformatics, systems biology, data science, statistical biology, biostatistics, etc.)
- Machine learning is a data analysis method (and subfield of computer science) that automate analytical model building to make data driven **predictions** or discover **patterns** without explicit human intervention (algorithms are implemented in code)

- Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis, prognosis, and treatment efficacy
- Computers and math are necessary to advance biological research (may be referred to as computational biology, bioinformatics, systems biology, data science, statistical biology, biostatistics, etc.)
- Machine learning is a data analysis method (and subfield of computer science) that automate analytical model building to make data driven **predictions** or discover **patterns** without explicit human intervention (algorithms are implemented in code)
- Machine learning is useful when we have complex problems with lots of 'big' data

- Genomics generates big data to address complex biological problems, e.g., improving human disease prevention, diagnosis, prognosis, and treatment efficacy
- Computers and math are necessary to advance biological research (may be referred to as computational biology, bioinformatics, systems biology, data science, statistical biology, biostatistics, etc.)
- Machine learning is a data analysis method (and subfield of computer science) that automate analytical model building to make data driven **predictions** or discover **patterns** without explicit human intervention (algorithms are implemented in code)
- Machine learning is useful when we have complex problems with lots of 'big' data
- 'Wet lab' and 'dry lab' biology inform one another—>both are biology!

Traditional Programming

Genomics Requires Team and Individual Expertise in Many Disciplines Because We Are Addressing Complicated Questions

PSA: Any Research Experience is Useful When You're Starting Out

- Catfish virus genes increasing disease susceptibility
- Using bacteria to clean hydrocarbons from ship bilge water
- Hormone effect on kidney mitochondria and obesity
- Reverse engineering electromagnetic flow probes
- Using bacteria to produce ethanol
- Mechanisms of oxidative stress in the brain

Thanks! Slides available at https://www.lasseigne.org/post/2018-06-04biotraincompbioworkshop2018/

Brittany N. Lasseigne, PhD @bnlasse <u>blasseigne@hudsonalpha.org</u>